



# MorreRT cDNA Synthesis Kit

## The MorreRT cDNA Synthesis Kit For Long-Fragment cDNA Amplification

The MorreRT cDNA Synthesis Kit (+gDNA remove mix) is designed for the 1st strand cDNA synthesis with genomic DNA removal treatments. The MorreRT Reverse Transcriptase is a new generation reverse transcriptase optimized from the M-MLV (RNase H-) Reverse Transcriptase. The half-life of MorreRT Reverse Transcriptase at 50°C is > 240 min. Even at 55°C, the MorreRT Reverse Transcriptase can stay stable for a long time, which significantly benefits the transcriptase has a improved template with complex secondary structures. In addition, the MorreRT Reverse Transcriptase has a improved template affinity and cDNA synthesis efficiency. It has a good resistance to most RT-PCR inhibitors and is suitable for long-fragment cDNA amplification (as long as 20 kb).

The residual genomic DNA in RNA template can be removed rapidly and completely after a treatment (42°C for 2 min) with the 4× gDNA remove mix. The 10× RT Mix contains an optimized buffer and dNTPs. The MorreRT Reverse Transcriptase Mix contains the MorreRT Reverse Transcriptase and the RNase inhibitor. The Oligo-(dT)<sub>23</sub> has a better affinity to Ploy A+ RNA than Oligo-(dT)<sub>18</sub>. In addition, random hexamers and gene-specific primers (GSP) are also optional.

## **Order Information**

| Product                    | Cat. No.    | Quantity |
|----------------------------|-------------|----------|
| MorreRT cDNA Synthesis Kit | MRTK-GR50   | 50 mm    |
| (+ gDNA Remove mix)        | MIKI K-GK3U | 50 rxn   |

## **Contents of Kits**

| Component                                              | Amount |
|--------------------------------------------------------|--------|
| RNase free ddH <sub>2</sub> O                          | 1mL    |
| 4x gDNA remove mix                                     | 200 µL |
| 10x MorreRT Buffer with dNTP                           | 100 μL |
| MorreRT Reverse Transcriptase Mix with RNase inhibitor | 100 µL |
| Oligo dT23 (50uM)                                      | 50 µL  |
| Random hexamers (50ng/ul)                              | 50 μL  |

### Storage

All components should be stored at -20°C.

## Additional Materials Required

RNase-free microtube (1.5 mL) or PCR tube (0.2 mL). PCR instrument or water bath. Ice bath.

## Protocol

Note:

- 1. Use high quality total RNA with high intergrity for reverse transcription.
- 2. To avoid RNase contamination, please keep the experiment area clean, wear clean gloves and masks, and use RNase-free tubes and tips.
- 3. Primer selection (Oligo-dT, Random hexamers, or GSP):

#### If cDNA product will be used for PCR.

- For eukaryotic RNA templates, generally, use oligo-dT to obtain the highest yield of full-length cDNA.
- ♦ Use gene-specific primer (GSP) to obtain the highest specificity. However, switch to oligo-dT or random haxamers if GSP fails in the 1st. strand cDNA synthesis.
- ☆ Random hexamers with the lowest specificity can be used for RNA templates, including mRNA, rRNA, and tRNA. Use random hexamers when oligo-dT or GSP fails in cDNA synthesis due to complex secondary structure, high GC content, or prokaryotic RNA template.

#### If cDNA product will be used for qPCR.

 $\diamond$  Use the mixture of oligo-dT or random hexamers.

#### 1 If cDNA prodcuct will be used for PCR.

| 1.1   | RNA Denaturation*.            |                     |
|-------|-------------------------------|---------------------|
|       | Mix the following component   | nts in a RNase-free |
|       | PCR tube, and incubate at     | 65°C for 5min and   |
|       | then chill on ice immediately | y for 2 min.        |
| RNas  | e free ddH <sub>2</sub> O     | to 12 μL            |
| Oligo | $dT_{23}$ (50µM)              | •                   |

| or Random hexamers (50ng/ul) | 1 μL               |
|------------------------------|--------------------|
| Total RNA                    | 10pg - 5µg         |
| or PolyA+ RNA                | 10pg- 500ng        |
|                              | <b>NT4 + 11 TT</b> |

\* RNA denaturation benifits the cDNA yield. However, for cDNA < 3 kb, please skip the denaturation step.

| 1.2                     | Removal of Genomic D   | NA, and incubate at |
|-------------------------|------------------------|---------------------|
|                         | 42°C for 2 min.        |                     |
| Mixtu                   | re of Step1.1. (12 μL) | 12 µL               |
| 4x gDNA remove mix 4 μL |                        | 4 μL                |

1.3 Mix the following components in a RNase-free PCR tube by gently pipetting.

| I Git tube by genity pipetting. |       |
|---------------------------------|-------|
| Mixture of Step 1.2. (16 µL)    | 16 µL |
| 10x MorreRT Buffer with dNTP    | 2 µL  |
| MorreRT Reverse Transcriptase   | 2T    |
| Mix with RNase inhibitor        | 2 μL  |

1.4 Start the 1st-strand cDNA synthesis.

| Temperature | Duration |
|-------------|----------|
| 25°C*       | 5 min    |
| 50°C**      | 45 min   |
| 85°C        | 5 min    |

\* Only necessary when using random hexamers. Please skip this step when using Oligo dT23 or Gene Specific Primers (GSP).

\*\* For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.

1.5 The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to store at -80°C and make aliquots to avoid repeated freezing and thawing.

#### For Research Use Only. Not for use in diagnostic procedures.

#### 2 If cDNA prodcuct will be used for qPCR.

| 2.1 Removal of Genomic DNA    | .1 Removal of Genomic DNA Mix the following |  |
|-------------------------------|---------------------------------------------|--|
| components in a RNase-        | free microtube by                           |  |
| pipetting, and incubate at    | 42°C for 2 min.                             |  |
| RNase free ddH <sub>2</sub> O | to 16 µL                                    |  |
| 4x gDNA remove mix            | 4 μL                                        |  |
| Oligo dT <sub>23</sub> (50uM) | 1 µL                                        |  |
| Random hexamers (50ng/ul)     | 1 µL                                        |  |
| Total RNA                     | 10pg - 1µg                                  |  |
| or PolyA+ RNA                 | 10pg- 100ng                                 |  |

2.2 Mix the following components in a RNase-free PCR tube:

| Mixture of Step 2.1. (16 µL)                           | 16 µL |
|--------------------------------------------------------|-------|
| 10x MorreRT Buffer with dNTP                           | 2 μL  |
| MorreRT Reverse Transcriptase Mix with RNase inhibitor | 2 μL  |

#### 2.3 Start the 1st-strand cDNA synthesis.

| Temperature                                 | Duration |
|---------------------------------------------|----------|
| 50°C*                                       | 15 min   |
| 85°C                                        | 2 min    |
| * East to an interaction and the second and |          |

\* For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.

2.4 The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to stored at -80°C and make aliquots to avoid repeated freezing and thawing.