

The MorreRT For Long-Fragment cDNA Amplification

The MorreRT Reverse Transcriptase is a new generation reverse transcriptase optimized from the M-MLV (RNase H-) Reverse Transcriptase. The half-life of MorreRT Reverse Transcriptase at 50° C is > 240 min. At 55°C, the MorreRT Reverse Transcriptase can also be stable for a long time, which significantly benifits the transcription of RNA templates with complex secondary structures. In addition, the MorreRT Reverse Transcriptase has a improved template affinity and cDNA synthesis efficiency. It has a good resistance to most RT-PCR inhibitors and is suitable for long-fragment cDNA amplification (as long as 20 kb).

Contents of Kits

Component	Volume
MorreRT Reverse Transcriptase (10,000U)	50ul
5× MorreRT Buffer	500 ul

Storage

All components should be stored at -20 $^{\circ}$ C.

Unit Definition

One unit (U) is defined as the amount of enzyme that incorporates 1 nmol of dTTPs into acidinsoluble products in 10 min at 37°C with Poly(rA)-Oligo (dT) as the template / primer.

Protocol

- 1. Use high quality total RNA with high intergrity for reverse transcription.
- 2. To avoid RNase contamination, please keep the experiment area clean, wear clean gloves and masks, and use RNase-free
- 3. Primer selection (Oligo-dT, Random hexamers, or GSP)

If cDNA prodcuct will be used for PCR

- * For eukaryotic RNA tempaltes, generally, use oligo-dT to obtain the highest yield of full-length cDNA.
- Use gene-specific primer (GSP) to obtain the highest specificity. However, switch to oligo-dT or random haxamers if GSP fails in the 1st. strand cDNA synthesis.
- * Random hexamers with the lowerst specificity can be used for RNA templates, including mRNA, rRNA, and tRNA. Use random hexamers when oligo-dT or GSP fails in cDNA synthesis due to complex secondary structure, high GC content, or prokaryotic RNA template.

If cDNA prodcuct will be used for qPCR

* Use the mixture of oligo-dT or random hexamers.

1. If cDNA prodcuct will be used for PCR

1.1. RNA Denaturation*

Mix the following components in a RNase-free PCR tube:

Rnase free ddH ₂ O	to 13 µl
Oligo dT_{23} (50 ng/ μ l)	
or Random hexamers (50ng/µl)	1 μl
or Gene Specific Primers (2μM)	
Total RNA	10 pg-5 ug
or Poly A ⁺ RNA	10 pg-500 ng

Incubate at **65**°C for 5 min and then chill on ice immediately for 2 min.

Note: * RNA denaturation benifits the cDNA yield. However, for cDNA < 3 kb, please skip the denaturation step.

1.2. Mix the following components in a RNase-free PCR tube by gently pipetting:

70 711 0	
Mixture of Step 1.1.	13 μl
5x MorreRT Buffer	4 μl
dNTP Mix (10mM each)	1 μl
MorreRT Reverse Transcriptase	1 μl
Rnase inhibitor (40U/ul)	1 μl

For Research Use Only. Not for use in diagnostic procedures. 1.3. Start the 1st-strand cDNA synthesis.

Mix the following components in a RNase-free PCR tube:

25°C*	5 min
50°C**	45 min
85℃	5 min

- Note: * Only necessary when using random hexamers. Please skip this step when using Oligo dT₂₃ or Gene Specific Primers (GSP).
 - ** For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.
- 1.4. The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to stored at -80°C and make aliquots to avoid repeated freezing and thawing.

2. If cDNA prodcuct will be used for qPCR

2.1. Mix the following components in a RNase-free

RNase free ddH2O	to 20 μl
5× MorreRT Buffer	4 μl
dNTP Mix (10mM each)	1 μl
MorreRT Reverse Transcriptase	1 μl
RNase inhibitor (40 U/ μ l)	1 μl
Oligo d T_{23} (50 μ M)	1 μl
Random hexamers (50 ng/µl)	1 μl
Total RNA	10 pg-1 μg
or Poly A+ RNA	10 pg-100

2.2. Start the 1st-strand cDNA synthesis.

25°C	5 min	
50°C *	15 min	
85°C	5 min	

Note: * For templates with complex secondary structure or high GC-content, the temperature can be increased to 55°C, which will benefit the yield.

2.3. The products can be used for PCR immediately or be stored at -20°C for 6 months. However, it is recommended to stored at -80°C and make aliquots to avoid repeated freezing and thawing.